The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes.

نویسندگان

  • P Penfornis
  • S Viengchareun
  • D Le Menuet
  • F Cluzeaud
  • M C Zennaro
  • M Lombès
چکیده

By use of targeted oncogenesis, a brown adipocyte cell line was derived from a hibernoma of a transgenic mouse carrying the proximal promoter of the human mineralocorticoid receptor (MR) linked to the SV40 large T antigen. T37i cells remain capable of differentiating into brown adipocytes upon insulin and triiodothyronine treatment as judged by their ability to express uncoupling protein 1 and maintain MR expression. Aldosterone treatment of undifferentiated cells induced accumulation of intracytoplasmic lipid droplets and mitochondria. This effect was accompanied by a significant and dose-dependent increase in intracellular triglyceride content (half-maximally effective dose 10(-9) M) and involved MR, because it was unaffected by RU-38486 treatment but was totally abolished in the presence of aldosterone antagonists (spironolactone, RU-26752). The expression of early adipogenic gene markers, such as lipoprotein lipase, peroxisome proliferator-activated receptor-gamma, and adipocyte-specific fatty acid binding protein 2, was enhanced by aldosterone, confirming activation of the differentiation process. We demonstrate that, in the T37i cell line, aldosterone participates in the very early induction of brown adipocyte differentiation. Our findings may have a broader biological significance and suggest that MR is not only implicated in maintaining electrolyte homeostasis but could also play a role in metabolism and energy balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes.

Uncoupling proteins (UCP), specific mitochondrial proton transporters that function by uncoupling oxidative metabolism from ATP synthesis, are involved in thermoregulation and control of energy expenditure. The hibernoma-derived T37i cells, which possess functional endogenous mineralocorticoid receptors (MR), can undergo differentiation into brown adipocytes. In differentiated T37i cells, UCP1 ...

متن کامل

Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action.

Aldosterone is a major regulator of salt balance and blood pressure, exerting its effects via the mineralocorticoid receptor (MR). To analyze the regulatory mechanisms controlling tissue-specific expression of the human MR (hMR) in vivo, we have developed transgenic mouse models expressing the SV40 large T antigen (TAg) under the control of each of the two promoters of the hMR gene (P1 or P2). ...

متن کامل

Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes.

Leptin, the ob gene product, is produced by adipose tissue and is submitted to a complex hormonal and metabolic regulation. Leptin plays a critical role in the balance of body weight. Here we report on secretion and hormonal regulation of leptin by brown adipocytes. Using the recently established T37i cell line, we show that leptin expression and secretion occurred as a function of cell differe...

متن کامل

Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction.

We reported aldosterone as a novel adipocyte-derived factor that regulates vascular function. We aimed to investigate molecular mechanisms, signaling pathways, and functional significance of adipocyte-derived aldosterone and to test whether adipocyte-derived aldosterone is increased in diabetes mellitus-associated obesity, which contributes to vascular dysfunction. Studies were performed in the...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 279 2  شماره 

صفحات  -

تاریخ انتشار 2000